
9-Jan-25—3:59 PM

1
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

1
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Menu
• Computer Organization
• Programming Model for an example

microprocessors (the G-CPU & Motorola 68HC11)
• Assembly Programming

Look into my ...

See examples on web:
DirAddr.asm, ExtAddr.asm,
IndAddr.asm, ImmAddr.asm,

Phone.asm

EEL3701

2
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Computer Functional
Block Diagram

DATA

CONTROL

CONTROL

MEMORYI/O &
Peripherals

CPU

ALU

ADDRESS

1

2

9-Jan-25—3:59 PM

2
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

3
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Memory and
I/O Units

Memory Unit

Data Address MEMORY
UNIT

Data Out

Read/Write
Enable

Data In

Status

I/O Unit

INPUT/OUTPUT
UNITDevice Address

Control

Data Out Data In

Status
Device Identity

CONTROL

MEMORYI/O

CPU

ALU

EEL3701

4
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Control Unit

Control Unit Program
Counter

Control
Sequence
Generator

Instruction
Register

Instruction
Decoder

Clock

ALU

Misc.Misc.

SDR

SAR

storage data
(buffer) reg

storage
address reg

• Functions
> Decodes Instruction
> Generates Control Signals
> Generates Timing Signals

• Hardware
> Instruction Register (IR)
> Program Counter (PC)
> Control Signal Generator
> Clock

Status
Register

3

4

9-Jan-25—3:59 PM

3
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

5
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Arithmetic/Logic Unit (ALU)
Arithmetic/Logical Unit (ALU)

• Functions
> Arithmetic operations on data
> Logical operations on data
> Shifting operations on data
> Status checking on results

• Hardware
> Arithmetic/Logical circuits
> Accumulator
> Shifter
> Status Register

Shifter

Accumulator

To Memory

Status
Register

Function
Code (from
Control Unit)

Shift/No Shift
Left/Right
Logical/Arithmetic

from
C.U.

Flags to
Control
Unit

From Memory

ALU

EEL3701

6
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Instruction Register
• The n-bit instruction register consists of a MUX

and a D-FF.
>The MUX has a select line, IR_LD
>The output of the MUX goes to the D input of the D-FF
>The output of the D-FF is the 0 input of the MUX
>The 1 input of the MUX comes from the input bus

5

6

9-Jan-25—3:59 PM

4
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

7
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Programming Model for GCPU
8-bit Accumulators A And B

Index (Displacement) Register X

Index (Displacement) Register Y

Memory Address Register (Hidden) MAR

Program Counter PC

01

Zero
Negative

N Z Condition Code Register (CCR)
[aka Status Register]

IX 015

IY 015

MAR 015

PC 015

IR 05

A 07 B 07

Instruction Register (Hidden) IR

EEL3701

8
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Programming Model for
Motorola 68HC11

07 07A B
D 015

015

015

015

015

IX

IY

SP

PC

8-BIT ACCUMULATORS A AND B
OR

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

STACK

CCR
ACCB
ACCA

IXH
IXL
IYH
IYL

PCH
PCL

SP-9
SP-8
SP-7
SP-6
SP-5
SP-4
SP-3
SP-2
SP-1
SP

SP BEFORE
INTERRUPT

SP AFTER
INTERRUPT

I.R.7 0

07
CONDITION CODE REGISTER (CCR)

CARRY/BORROW FROM MSB
OVERFLOW
ZERO
NEGATIVE
INTERRUPT MASK
HALF CARRY (FROM BIT 3)
X INTERRUPT MASK
STOP DISABLE

S X H I N Z V C

Our 68HC11 (68HC11-E9) has:
512 bytes of RAM:

$0000-$00FF and $0100-$01FF
512 bytes of EEPROM:

$B600-$B7FF
12K of ROM: (Buffalo Monitor)

$D000-$FFFF
Internal Registers:

$1000-$103F

Hidden

7

8

9-Jan-25—3:59 PM

5
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

9
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Schwartz in Jamaica

EEL3701

10
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

General-Purpose Registers
(GCPU & 68HC11)

• There are two general-purpose registers. They are referred
to as 8-bit registers A and B.

• Registers A and B, often called accumulators, are the most
important data registers. A and B can store 8-bit numbers.

• Examples:
LDAA VALUE1 ; Move the byte at location VALUE1 to Register A.

LDAB VALUE2 ; Move the byte at location VALUE2 to Register B.

SUM_BA ; Add the byte in Register B to A, the sum replaces

* ; the content of Register A. (68HC11 spelling is ABA)

SHFA_L ; Shift the contents of Register A to the left by 1 bit.

* ; (68HC11 spelling is LSLA or ASLA)

9

10

9-Jan-25—3:59 PM

6
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

11
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

General-Purpose
Registers (68HC11)

• Registers A and B are sometimes treated together as a single 16-bit
register D in some instructions.

• Examples:
LDD WORD1 ; The 16-bit word at location WORD1 is moved to Register D.

* (A number is stored in A and B treated as 16-bit register D).

ADDD WORD2 ; The 16-bit word at location WORD2 is added to Register D.

• Most (but not all) of the instructions that involve an 8-bit register
can use either A or B as one of the instruction operands. The
instruction set of the 68HC11 is said to be nearly symmetric.
Symmetric instruction sets are programmer friendly in that the
programmer need only remember a single instruction mnemonic.

• Examples:

LDA (LDAA, LDAB), STA (STAA, STAB), ROL (ROLA, ROLB),
etc.

EEL3701

12
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU Special-
Purpose Registers

• Condition Code Register (CCR): A 2-bit flag register
in which condition codes (binary flags) are stored and
tested. Also called the Status Register.

• Index Registers (IX and IY): The 16-bit registers used
to store the index value for operands retrieved using the
indexed addressing mode. Also called X and Y.

• Program Counter (PC): A 16-bit register whose
content addresses the memory location that contains the
next instruction to be executed.

• Memory Address Register (MAR): A 16-bit register
which contains the address of the memory location to be
referenced. Used for Extended Addressing instructions.

11

12

9-Jan-25—3:59 PM

7
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

13
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Assembly Language
Programming Syntax

• For the microprocessor to understand our commands, each
instruction must conform to a specific format.

>The general format for an GCPU/68HC11 instruction:
[Label:] Operation-Mnemonic Operand (s) Comments

• A label is a symbolic name for the address of an
instruction.

>Most branch instructions utilize a label as the symbolic
name of an address to which a jump may occur.

>When associated with an executable instruction, a label
is separated from the operand by at least one whitespace
character (blanks, tabs, etc.), or optionally by a colon (:).

>If the colon is used, it is not part of the label but merely
acts to set the label off from the rest of the line.

EEL3701

14
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• Each instruction must include, the operation that the
microprocessor is to perform.

>Each operation code is an abbreviation (mnemonic) of
the corresponding command.

• Each instruction may also include an operand (or
operands) that is the object of the operation.

>An operand can be a memory location (source or
destination address), an external memory-mapped
register, a label, a numeric value, a register-indexed
address, etc.

>Depending on the operation, an instruction can have
zero, one, two, three operands.

Assembly Language Programming

13

14

9-Jan-25—3:59 PM

8
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

15
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Assembly Language Programming

• We can optionally associate a comment with an
instruction.

>A comment is separated from the operand field (or
from the operation field if no operand is required) by
at least one whitespace character.

>If a line of code begins with the asterisk character (*)
in the label field, the entire line is interpreted as a
comment line.

>A comment is not a command to the microprocessor.
– A comment is a reminder to the programmer or as an

explanation of the purpose of a set of instructions.

EEL3701

16
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Assembler
Concepts

Source
“TXT” File

Instruction
Mnemonics

LDAA #10

Text Editor
{NOTEPAD}

Assembler

Object
File

P Simulator

List
“LST” File

P
Binary(Hex)

Machine
Codes

68HC11: $86 $0A
G-CPU: $02 $0A

15

16

9-Jan-25—3:59 PM

9
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

17
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• A set of assembly language instructions is called an assembly
language program and is also know as source code.

> An assembly language program must be transformed into a form that can be
stored in memory locations, and understood by the microprocessor.

> This form is called machine language program, also called object code.

• The transformation is called program assembly and is accomplished
with a computer program called an assembler.

• The machine language program is simply a coded version of the
assembly language program, with each machine language instruction
corresponding to an assembly language instruction.

Assembly Language, Machine
Language, and Program Assembly

EEL3701

18
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Data Transfer

P P Memory

P reads the data
from D7-D0

P writes the data
to D7-D0

P sends out the effective address in A15-A0

P sends out the effective address in A15-A0

17

18

9-Jan-25—3:59 PM

10
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

19
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Data Transfer Instructions
• A P system performs all its functions through a

sequence of data transfers and data
transformations.

>Data transfer between the internal registers within the
P.

– Ex: TAB, TBA

>Data transfer between a memory register and an
internal register within the P.

– Ex: LDAA addr, LDX addr, LDAB #data
>Data transfer between a peripheral devices and an

internal register within the P.
– Ex: LDAA memory-mapped-io, LDX memory-mapped-io

EEL3701

20
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Data Transfer Between
Internal Registers

• Data transfers between internal registers use the
inherent addressing mode - everything needed to
execute the transfer instruction is inherently
known by the CPU.

• The 8-bit transfer instructions have a general
mnemonic given by Twz, where w (one of A or B)
is the source register and z (A or B and wz) is
the destination register.

(Ex) TAB: Transfer Register A to B

A 0 0 0 1 0 0 0 1

B 1 1 1 1 0 0 0 0

(BEFORE)
A 0 0 0 1 0 0 0 1

(AFTER)

B 0 0 0 1 0 0 0 1

19

20

9-Jan-25—3:59 PM

11
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

21
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

More Data Transfer
Instructions

� Transfers between CCR and Accumulator A

� A 16-bit transfers between D (A and B together as a 16-bit register)
and either Index Register X or Index Register Y.

Example: XGDX (exchange Register D with X)

D

X

$FF00

(BEFORE)

D

X

(AFTER)

$00FF

$FF00$00FF

68HC11
(N/A on GCPU)

Flags
Affected

Address
ModeDescriptionInstruction

N,Z,VInherent(B/A)  (A/B)TAB/TBA
AllInherent(CCR)  (A)TAP

NoneInherent(A)  (CCR)TPA
NoneInherent(D)  (X/Y)XGDX/XGDY

EEL3701

22
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Data Transfer Between
Memory & Internal Register

• During the execution of a program, data is frequently transferred,
often in large quantities, between the memory locations and the
internal registers. Instructions for such transfers, commonly called
memory reference instructions, have two operands, a source and a
destination, one of which may be implied. One of the two operands
specifies an internal register, and the other the effective address of a
memory location.

• Definition
Effective Address: Where data comes from or goes to

• The manner of specifying the effective address is called the
addressing mode. For the 68HC11, six addressing modes are
possible — direct, extended, indexed, immediate, relative and the
inherent mode (used for register-to-register transfers).

21

22

9-Jan-25—3:59 PM

12
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

23
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Direct Addressing
Mode (68HC11)

Effective Address in A15-A0

0000 0000 User-Supplied User-Supplied

Example: LDAA $37 ; Pg 0, Locn $37 (A=$0037)

or LDAA $0037 ; also Pg 0, Locn $37

0000 0000 0011 0111

P Supplied

Page Number $00

EEL3701

24
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Direct Addressing Mode
(68HC11)

• Direct addressing allows the user (through the assembler) to access
Memory Locations $0 through $FF using only the least significant
byte of the 16-bit memory location that is to be referenced.

> The high order byte of the effective address is assumed to be $00 (0016) and is
not included with the instruction operation code when the program is executed
by the P.

• An advantage is that execution time is reduced by requiring only one
memory read to determine the effective address.

• Another advantage is the savings of one byte in program memory.
• The limitation is that it restricts the use of direct addressing mode to

operands in the $0000-$00FF area of memory (called the direct page
or page 0).

> Thus, direct addressing in this 256-byte area should be reserved for frequently
referenced data, or for program code which requires high-speed execution.
The direct addressing mode is sometimes called the zero-page addressing
mode.

23

24

9-Jan-25—3:59 PM

13
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

25
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Direct Addressing
Examples (68HC11)

• Load Instruction Using Direct Addressing Mode
>LDAA: Load Register A / LDAB: Load Register B
1. LDAB $10 ;Load the 8-bit value in $0010 into Register B
2. LDAB %00010000 ;Same as above
3. TESTV EQU $10 ;TESTV has value $10

LDAB TESTV ;Also loads the 8-bit value in memory location
* ; $0010 (also named TESTV) into Register B

$??
Addresses
$000E
$000F
$0010
$0011

$00FF

BEFORE

AFTER

B

B

MEMORY
See example

DirAddr.asm$28

$28
…

EEL3701

26
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Direct Addressing
Examples (68HC11)

• Store Instruction Using Direct Addressing Mode
>STAA: Store Register A /STAB: Store Register B

1. STAB $11 ;Store the 8-bit value in Register B into
* ; memory location $0011

2. STAB %00010001 ;Also stores the 8-bit value in Register B into
* ; memory location %00010001

3. LEVEL EQU $11 ;LEVEL has value $11
STAB LEVEL ; Also stores the 8-bit value in Register B into

* ; memory location $11 (also named LEVEL)

$28
$??

$000E
$000F
$0010
$0011

$77B
MEMORY BEFORE

Addresses

$28
$77

$000E
$000F
$0010
$0011

MEMORY AFTER

Addresses

$77B

25

26

9-Jan-25—3:59 PM

14
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

27
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Extended Addressing Mode

User-Supplied User-Supplied

Example: LDAA $1234 ; Pg $12, Locn $34

or LDAA $AB34; Pg $AB, Locn $34

0001 0010 0011 0100

Non-zero Page No. $12

User-Supplied User-Supplied

Effective Address in A15-A0

EEL3701

28
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Extended Addressing Mode
• In the extended addressing mode, we specify, as part of an instruction,

the entire 16-bit memory location that is to be referenced. Extended
addressing allows the programmer to reference any location in the
entire memory range of the GCPU. Since addresses are 16-bit
quantities, the range of valid memory references is 000016-FFFF16.
The instruction includes as part of the machine code the complete 2-
byte address of the operand.

• Example: The first line below performs direct addressing; the second
line below performs extended addressing for the 68HC11

LDAB $10 ;68HC11 machine codes: d6 10
LDAA $4237 ;68HC11 machine codes: b6 42 37

• Example: The below lines perform extended for GCPU since the
GCPU does not have direct addressing; note the order of address bytes.

LDAB $10 ;G-CPU machine codes: 05 10 00
LDAA $4237 ;G-CPU machine codes: 04 37 42

27

28

9-Jan-25—3:59 PM

15
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

29
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Little-Endian and Big-Endian

37
42

04
GCPU

3AB1
3AB2

3AB0

42
37

B6
68HC11

3AB1
3AB2

3AB0

• Little-Endian: Describes a computer architecture in which,
within a given 16-bit word, bytes at lower addresses have
lower significance (the word is stored `little-end-first').

> The PDP-11 and VAX families of computers and Intel
microprocessors and a lot of communications and networking
hardware are little-endian. (GCPU)

• Ex: LDAA $4237 ;G-CPU machine codes: 04 37 42

• Big-Endian: Describes a computer architecture in which,
within a given multi-byte numeric representation, the most
significant byte has the lowest address (the word is stored
`big-end-first').

> IBM 370 family, the PDP-10, the Motorola microprocessor
families, and most RISC designs are big-endian. (68HC11)

• Ex: LDAA $4237 ;68HC11 machine codes: b6 42 37

EEL3701

30
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Extended Addressing Examples
� Load Instruction Using Extended Addressing Mode
• LDAA: Load Register A /LDAB: Load Register B

1. LDAB @420 ;Load a 8-bit value in 4208 (011016) into Register B
2. LDAB 272 ;the same as above. 27210 (011016)
3. DATA EQU $0110 ;DATA has value $0110

LDAB DATA ;Also loads the 8-bit value in Memory Location
* ; 011016 (also named DATA) into Register B

$??
Addresses
$010E
$010F
$0110
$0111

$FFFF

BEFORE

AFTER

B

B

MEMORY

$28

$28

… ExtAddr.asm

29

30

9-Jan-25—3:59 PM

16
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

31
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Extended Addressing Examples
� Store Instruction Using Extended Addressing Mode
• STAA: Store Register A /STAB: Store Register B

1. STAB @421 ;Store the 8-bit value in Register B into
* ; memory location 4218 (100 010 0012 =011116)

2. STAB 273 ;Also stores the 8-bit value in Register B into
* ; memory location 27310 (011116)

3. LPT1 EQU $0111 ;LPT1 has value $0111
STAB LPT1 ;Also stores the 8-bit value in Register B into

* ; memory location 011116 (also named LPT1)

$28
$??

$010E
$010F
$0110
$0111

$77B

MEMORY BEFORE

Addresses

$28
$77

$010E
$010F
$0110
$0111

MEMORY AFTER

Addresses

$77B

ExtAddr.asm

EEL3701

32
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Indexed Addressing Mode

User-Supplied User-Supplied

Example: Assume IX = $1234, then
LDAA $2A,X ; Loads the content of Page $12 Locn $34+$2A

0001 0010 0101 1110

User-Supplied User-Supplied

Effective Address in A15-A0

IX or IY

User-SuppliedUser-Supplied
1 Byte Displacement

(8-bit unsigned number)

+0001 0010 0011 0100

0010 1010

But IX / IY remain unchanged!!!

31

32

9-Jan-25—3:59 PM

17
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

33
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

� With indexed addressing we do not directly specify the
effective address as part of an instruction. Instead, we
specify one of two index registers (Index Register X or Y)
that contain an address which is within 255 bytes of the 16-
bit operand address. We can think of the value stored in the
index register as the base address used in calculating the
actual effective address by the following formula:
(effective address) = (base address [value in X or Y])

+ (8-bit unsigned offset/displacement)
� This addressing mode allows referencing any memory

location in the address space. It is used primarily for
manipulating contiguous memory locations (a linear array or
vector of memory addresses).

Indexed Addressing Mode

EEL3701

34
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Indexed Addressing Example
� [Example] Retrieve a 7-digit telephone number (846-1509) stored in

the memory as a 7 BCD digit sequence starting at Memory Location
001016

.

..

.

.

$0010
$0011
$0012
$0013

$08

X $0010
MEMORY

$0014
$0015
$0016
$0017

$09

$04
$06
$01
$05
$00

???

LDAA 0,X
STAA DIGIT1

LDAA 1,X
STAA DIGIT2

LDAA 5,X
STAA DIGIT6

LDAA 6,X
STAA DIGIT7

..

.

Repeat with
a better

program.
This time

use a single
address for
the “Dialer”

and use a
loop.

phone.asm

33

34

9-Jan-25—3:59 PM

18
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

35
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Indexed Addressing
� An advantage of using indexed addressing becomes apparent if we

wish to repeat the telephone example using a new number stored at a
different memory location, say, Memory Location $202A. One need
only reload Index Register X with its new value ($202A) and we can
use the same 14 instruction sequence in Fig. 9.8.

� If no offset is specified or desired, the instruction generated by the
assembler will have $00 in the offset byte.

� The offset is an unsigned byte (an 8-bit binary number) that when
added to the current value of the index register, yields the effective
address of the operand leaving the index register unchanged.

� Because the offset is unsigned, a negative offset cannot be specified.

� Offsets range from 0 ($00) to 255 ($FF) inclusive.

EEL3701

36
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Immediate Addressing Mode

PC15-PC12 PC11-PC8

Example:
LDAA #$34 ; Put $34 inside Reg. A

• Action: The number $34 is placed after the LDAA opcode
imbedded in the program code. This results in the
number $34 being loaded into Register A.

• The effective address is the address of the immediate
number.

P Supplied

Effective Address in A15-A0

PC7-PC4 PC3-PC0

35

36

9-Jan-25—3:59 PM

19
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

37
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

LDAA Examples with Various
Addressing Modes (GCPU)

• Show with memory maps

$5020 LDAA $AB34 $04
$34
$AB

$5020
$5021
$5022

$A32B LDY #$C007
$A32E LDAA $F0,Y

$02
$34

$0101
$0102
$0103

$09
$07
$C0
$0D
$F0

$A32B
$A32C
$A32D
$A32E
$A32F
$A330
$A331

$0101 LDAA #$34

EA = $0102

EA = $AB34

EA = $A32C

EA = $C007+$F0 = $C0F7

EEL3701

38
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Immediate Addressing Mode
• In the immediate addressing mode, the instruction contains

the data itself, as an operand. The data can be an 8-bit
quantity (a byte), or a 16-bit quantity (a word), depending on
the instruction or the destination of the quantity. An
immediate operand is indicated by the character # used as a
prefix for a numeric operand expression.

• A variety of symbols and expressions can be used following
the character # sign (and sometimes without the # sign too)
> (none) : decimal quantities (the default base)
> $: hexadecimal quantities
> @ : octal quantities
> % : binary quantities
> ' : a single ASCII character

37

38

9-Jan-25—3:59 PM

20
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

39
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Immediate Addressing
Examples

ORG $0010 ;The program segment begins at location 001016.
;Symbol START is implicitly equated to 001016.

START LDAA #22 ;Load 22 into Register A
LDAB #$34 ;Load 3416 into Register B

CAT EQU 7 ;Symbol CAT is equated to 7
LDAA #CAT ;Load 7 into Register A
LDD #$1234 ;Load 123416 into Register D
LDY #$B100 ;Load B10016 into Register Y
LDX #START ;Load 001016 into Register X

CAT = 7

START = 001016

ImmAddr.asm

The value of any symbol is

equal to its address except

when used in the label field

of EQU statement.

The value of a symbol that appears

in the label field of an EQU directive

is defined by the value in the operand

field of the statement.

EEL3701

40
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Inherent Addressing
Example

� Inherent Addressing Mode improves efficiency

(ex) TAB, SUM_BA

(a) Example 1: SUM_BA ;AA + B C=0 H=0

Reg A 00010111
Reg B +10110001

(new) Reg A 11001000
Z=0 N=1

A $17
B $B1

(Before) (After)
A $C8
B $B1

$C8
V=0

39

40

9-Jan-25—3:59 PM

21
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

41
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Addressing Modes

Q: Can you determine the Effective Address
for each of the addressing modes?

A: If not, please learn ASAP. This is very
important!

EEL3701

42
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Common Assembler Directives
• Assembly Control

>ORG Origin (address) for next line in assembly program
• Symbol Definition

>EQU Assign permanent value
• Data Definition/Storage Allocation

>DC.B Define constant byte
>DC.W Define constant word
>DS.B Define storage bytes
>DS.W Define storage word

41

42

9-Jan-25—3:59 PM

22
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

43
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• ORG (Origin): It can be used to alter the location counter by setting it
to any memory location in memory.

ORG operand (where operand is a 16-bit address or an
expression that evaluates to a 16-bit
address.)

Example:
* Anything under this assembler directive will begin filling up
* memory at address $7300

ORG $7300

Assembler Directives
(Pseudo-instructions)

EEL3701

44
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• EQU (Equate): It informs the assembler to equate the specified
symbol name to the value of the operand. In other words, when the
symbolic name is subsequently encountered in the assembly process,
the assembler replaces it with the binary value of the corresponding
operand. The operand can be either a value or an expression that can
be evaluated. It should be used to improve the clarity and readability
of the assembly program.

Name EQU operand (where operand is a value or an expression
that evaluates to a value.)

Examples:
PI EQU 3 ; Pi will be replace everywhere in the file
* ; with the number 3
BestNo EQU $37 ; BestNo will be replaced by $37

Assembler Directives
(Pseudo-instructions)

43

44

9-Jan-25—3:59 PM

23
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

45
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• DC.B (Define Constant Byte): It allocates space in memory and also
initializes memory locations to specified values at the time of
assembly.

(label) DC.B operand (where operand is an 8-bit value, a list of
bytes, or an expression that evaluates to an
8-bit value.)

Examples:
ORG $0800
DC.B 37, $73, 42 ; ($0800) = 37 = $25, ($0801) = $73

* ; ($0802) = 42 = $2A
GSmrt DC.B $99 ; (GSmrt) = ($0803) = $99
Table DC.B 3, 9, 44, $2E, 244, $CD ; Table = $0804
EOT DC.B $FF ; EOT = End of Table

Mesg DC.B “3701 is the ‘best class’ ever!” ; Text strings ok too

Assembler Directives
(Pseudo-instructions)

EEL3701

46
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• DC.W (Define Constant Word): Like the DC.B directive, the DC.W
allocates space in memory and initializes memory locations to
specified values at assembly time. The difference is that the DC.W
directive allocates space and specifies values in 2 bytes (16-bits)
instead of 1 byte (8-bits).

(label) DC.W operand (where operand is a 16-bit value, a list of
words, or an expression that evaluates to an
16-bit value.)

Example:
ORG $0B42

SizeSig DC.B 4
Signal DC.W $5000, $1000, $3000, $2000

* Could also define SizeSig using an equate as shown below
SizeSig EQU 4

Assembler Directives
(Pseudo-instructions)

45

46

9-Jan-25—3:59 PM

24
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

47
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• DS.B (Define Storage Bytes): It allocates a block of storage in
memory, but it does not initialize the contents of the allocated memory
locations. DS.B is used for variables.

(label) DS.B operand (where operand is a value or an expression
that evaluates to a value.)

Examples:
* Space for a table is defined beginning at address $1A00 and ending
* at address $1AFF. A second table goes from $1B00-$1BFF. A single

1-byte variable is also shown.
ORG $1A00

Table DS.B 256
Tab2 DS.B 256
Var1 DS.B 1

Assembler Directives
(Pseudo-instructions)

EEL3701

48
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

• DS.W (Define Storage Word): Like the DS.B directive, the DS.W
allocates space in memory. The difference is that the DS.W directive
allocates space in 2 bytes (16-bits) increments instead of 1 byte (8-
bits). DS.W is used for two-byte variables.

(label) DS.W operand (where operand is a value or an expression
that evaluates to a value.)

Examples:
* Space for a table is defined beginning at address $1A000 and ending
* at address $1A09. Next is a two-byte variable and then a table of 2

two-byte variables.
ORG $1A00

Table DS.W 5 ; Table of 5 two-byte (word) variables
Var1 DS.W 1 ; Two-byte (word) variable
Var2 DS.W 2 ; Two two-byte (word) variables

Assembler Directives
(Pseudo-instructions)

47

48

9-Jan-25—3:59 PM

25
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

GCPU, Comp Org, 68HC11, Assembly

EEL3701

49
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

Decrement Instruction and Loops

• How can you make the equivalent of a DECA for
the GCPU?

• Hint: Remember that subtraction can be
accomplished by addition if a 2’s complement can
be calculated

EEL3701

50
University of Florida, EEL 3701 – File 24

© Drs. Schwartz & Arroyo

The End!

49

50

